229 research outputs found

    Longitudinal Target-Spin Asymmetries for Deeply Virtual Compton Scattering

    Get PDF
    A measurement of the electroproduction of photons off protons in the deeply inelastic regime was performed at Jefferson Lab using a nearly 6 GeV electron beam, a longitudinally polarized proton target, and the CEBAF Large Acceptance Spectrometer. Target-spin asymmetries for ep. e\u27p\u27gamma. events, which arise from the interference of the deeply virtual Compton scattering and the Bethe-Heitler processes, were extracted over the widest kinematics in Q(2), x(B), t, and phi, for 166 four-dimensional bins. In the framework of generalized parton distributions, at leading twist the t dependence of these asymmetries provides insight into the spatial distribution of the axial charge of the proton, which appears to be concentrated in its center. These results also bring important and necessary constraints for the existing parametrizations of chiral-even generalized parton distributions

    Design and Performance of SiPM-Based Readout of PbF\u3csub\u3e2\u3c/sub\u3e Crystals for High-Rate, Precision Timing Applications

    Get PDF
    We have developed a custom amplifier board coupled to a large-format 16-channel Hamamatsu silicon photomultiplier device for use as the light sensor for the electromagnetic calorimeters in the Muon g - 2 experiment at Fermilab. The calorimeter absorber is an array of lead-fluoride crystals, which produces short-duration Cherenkov light. The detector sits in the high magnetic field of the muon storage ring. The SiPMs selected, and their accompanying custom electronics, must preserve the short pulse shape, have high quantum efficiency, be non-magnetic, exhibit gain stability under varying rate conditions, and cover a fairly large fraction of the crystal exit surface area. We describe an optimized design that employs the new-generation of thru-silicon via devices. The performance is documented in a series of bench and beam tests

    Near-threshold Photoproduction of Phi Mesons from Deuterium

    Full text link
    We report the first measurement of the differential cross section on ϕ\phi-meson photoproduction from deuterium near the production threshold for a proton using the CLAS detector and a tagged-photon beam in Hall B at Jefferson Lab. The measurement was carried out by a triple coincidence detection of a proton, K+K^+ and K−K^- near the theoretical production threshold of 1.57 GeV. The extracted differential cross sections dσdt\frac{d\sigma}{dt} for the initial photon energy from 1.65-1.75 GeV are consistent with predictions based on a quasifree mechanism. This experiment establishes a baseline for a future experimental search for an exotic ϕ\phi-N bound state from heavier nuclear targets utilizing subthreshold/near-threshold production of ϕ\phi mesons

    Absorption of the ω\omega and ϕ\phi Mesons in Nuclei

    Full text link
    Due to their long lifetimes, the ω\omega and ϕ\phi mesons are the ideal candidates for the study of possible modifications of the in-medium meson-nucleon interaction through their absorption inside the nucleus. During the E01-112 experiment at the Thomas Jefferson National Accelerator Facility, the mesons were photoproduced from 2^{2}H, C, Ti, Fe, and Pb targets. This paper reports the first measurement of the ratio of nuclear transparencies for the e+e−e^{+}e^{-} channel. The ratios indicate larger in-medium widths compared with what have been reported in other reaction channels.Comment: 6 pages, 4 figure

    Studies of an array of PbF2 Cherenkov crystals with large-area SiPM readout

    Get PDF
    The electromagnetic calorimeter for the new muon (g-2) experiment at Fermilab will consist of arrays of PbF2 Cherenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. We report here on measurements and simulations using 2.0 -- 4.5 GeV electrons with a 28-element prototype array. All data were obtained using fast waveform digitizers to accurately capture signal pulse shapes versus energy, impact position, angle, and crystal wrapping. The SiPMs were gain matched using a laser-based calibration system, which also provided a stabilization procedure that allowed gain correction to a level of 1e-4 per hour. After accounting for longitudinal fluctuation losses, those crystals wrapped in a white, diffusive wrapping exhibited an energy resolution sigma/E of (3.4 +- 0.1) % per sqrt(E/GeV), while those wrapped in a black, absorptive wrapping had (4.6 +- 0.3) % per sqrt(E/GeV). The white-wrapped crystals---having nearly twice the total light collection---display a generally wider and impact-position-dependent pulse shape owing to the dynamics of the light propagation, in comparison to the black-wrapped crystals, which have a narrower pulse shape that is insensitive to impact position.Comment: 14 pages, 19 figures, accepted to Nucl.Instrum.Meth. A. In v2, edited Figures 14,15, and 17 for clarity, improved explanation of energy resolution systematics, added reference to SiP

    Target and beam-target spin asymmetries in exclusive pion electroproduction for Q2>1GeV2 . I. ep→eπ+n

    Get PDF
    Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive π + electroproduction reaction Îł ∗ p → n π + . The results were obtained from scattering of 6-GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Laboratory. The kinematic range covered is 1.1 < W < 3 GeV and 1 < Q 2 < 6 GeV 2 . Results were obtained for about 6000 bins in W ,   Q 2 ,   cos ( Ξ ∗ ) , and ϕ ∗ . Except at forward angles, very large target-spin asymmetries are observed over the entire W region. Reasonable agreement is found with phenomenological fits to previous data for W < 1.6 GeV, but very large differences are seen at higher values of W . A generalized parton distributions (GPD)-based model is in poor agreement with the data. When combined with cross-sectional measurements, the present results provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q 2 , for resonances with masses as high as 2.4 GeV

    Differential cross sections and recoil polarizations for the reaction gamma p -> K+ Sigma0

    Full text link
    High-statistics measurements of differential cross sections and recoil polarizations for the reaction Îłp→K+ÎŁ0\gamma p \rightarrow K^+ \Sigma^0 have been obtained using the CLAS detector at Jefferson Lab. We cover center-of-mass energies (s\sqrt{s}) from 1.69 to 2.84 GeV, with an extensive coverage in the K+K^+ production angle. Independent measurements were made using the K+pπ−K^{+}p\pi^{-}(Îł\gamma) and K+pK^{+}p(π−,Îł\pi^-, \gamma) final-state topologies, and were found to exhibit good agreement. Our differential cross sections show good agreement with earlier CLAS, SAPHIR and LEPS results, while offering better statistical precision and a 300-MeV increase in s\sqrt{s} coverage. Above s≈2.5\sqrt{s} \approx 2.5 GeV, tt- and uu-channel Regge scaling behavior can be seen at forward- and backward-angles, respectively. Our recoil polarization (PÎŁP_\Sigma) measurements represent a substantial increase in kinematic coverage and enhanced precision over previous world data. At forward angles we find that PÎŁP_\Sigma is of the same magnitude but opposite sign as PΛP_\Lambda, in agreement with the static SU(6) quark model prediction of PΣ≈−PΛP_\Sigma \approx -P_\Lambda. This expectation is violated in some mid- and backward-angle kinematic regimes, where PÎŁP_\Sigma and PΛP_\Lambda are of similar magnitudes but also have the same signs. In conjunction with several other meson photoproduction results recently published by CLAS, the present data will help constrain the partial wave analyses being performed to search for missing baryon resonances.Comment: 23 pages, 17 figure

    Measurement of the neutron F2 structure function via spectator tagging with CLAS

    Full text link
    We report on the first measurement of the F2 structure function of the neutron from semi-inclusive scattering of electrons from deuterium, with low-momentum protons detected in the backward hemisphere. Restricting the momentum of the spectator protons to < 100 MeV and their angles to < 100 degrees relative to the momentum transfer allows an interpretation of the process in terms of scattering from nearly on-shell neutrons. The F2n data collected cover the nucleon resonance and deep-inelastic regions over a wide range of Bjorken x for 0.65 < Q2 < 4.52 GeV2, with uncertainties from nuclear corrections estimated to be less than a few percent. These measurements provide the first determination of the neutron to proton structure function ratio F2n/F2p at 0.2 < x < 0.8 with little uncertainty due to nuclear effects.Comment: 6 pages, 3 page

    A comparison of forward and backward pp pair knockout in 3He(e,e'pp)n

    Full text link
    Measuring nucleon-nucleon Short Range Correlations (SRC) has been a goal of the nuclear physics community for many years. They are an important part of the nuclear wavefunction, accounting for almost all of the high-momentum strength. They are closely related to the EMC effect. While their overall probability has been measured, measuring their momentum distributions is more difficult. In order to determine the best configuration for studying SRC momentum distributions, we measured the 3^3He(e,eâ€Čpp)n(e,e'pp)n reaction, looking at events with high momentum protons (pp>0.35p_p > 0.35 GeV/c) and a low momentum neutron (pn<0.2p_n< 0.2 GeV/c). We examined two angular configurations: either both protons emitted forward or one proton emitted forward and one backward (with respect to the momentum transfer, q⃗\vec q). The measured relative momentum distribution of the events with one forward and one backward proton was much closer to the calculated initial-state pppp relative momentum distribution, indicating that this is the preferred configuration for measuring SRC.Comment: 8 pages, 9 figures, submitted to Phys Rev C. Version 2 incorporates minor corrections in response to referee comment
    • 

    corecore